eBook:

5 Steps to Offload Your Data Warehouse with Hadoop

tags:

Big Data, Data Integration, Data migration, Data warehouse, ETL, Hadoop, Offload
  • author:

    Syncsort
  • |
  • published:

    December 2013
Document-image

Get expert advice on offloading your EDW to Hadoop

Best practices & case studies provide real-world tips

A Quick-Start Guide to Free Up Your Data Warehouse ... and Budget

According to Gartner, nearly 70% of all data warehouses are performance and capacity constrained -- so it's no surprise that total cost of ownership is the #1 challenge most organizations face with their data integration tools.

Meanwhile, data volumes continue to grow. With no end in sight to the digital explosion, organizations are looking at Hadoop to collect, process, and distribute the ever-expanding data avalanche.

This guide offers expert advice to help you get started with offloading your EDW to Hadoop. Follow these 5 steps to overcome some of the biggest challenges & learn best practices for freeing up your EDW to do the work it was meant to do: provide the insights you need through high-performance analytics and fast user queries.

  1. Understand and define business objectives
  2. Get the right connectivity for Hadoop
  3. Identify the top 20% of ETL/ELT workloads
  4. Re-create equivalent transformations in MapReduce
  5. Make your Hadoop environment enterprise-ready

Related Product: DMX-h

DMX-h: DMX-h is a smarter approach to Hadoop ETL and Hadoop sort. Unleash Hadoop’s potential with a smarter approach to sorting, integrating and processing Big Data.

Learn more